Additional: Properties of Electromagnetic Waves
Energy Carried by EM Waves
Electromagnetic waves carry energy as they propagate through space. This is evident from phenomena like the warming effect of sunlight (infrared and visible light), the heating of food in a microwave oven (microwaves), or the energy deposited in tissues during X-ray exposure. This energy is stored in the oscillating electric and magnetic fields of the wave.
Energy Density of Electric Field ($ u_E $)
We know from electrostatics that an electric field stores energy in space. The energy density (energy per unit volume) of an electric field $\vec{E}$ in vacuum is given by:
$ u_E = \frac{1}{2} \epsilon_0 E^2 $
Where $\epsilon_0$ is the permittivity of free space and $E$ is the magnitude of the electric field.
Energy Density of Magnetic Field ($ u_B $)
Similarly, a magnetic field also stores energy in space. The energy density of a magnetic field $\vec{B}$ in vacuum is given by:
$ u_B = \frac{B^2}{2\mu_0} $
Where $\mu_0$ is the permeability of free space and $B$ is the magnitude of the magnetic field.
Total Energy Density of an EM Wave
An electromagnetic wave consists of both electric and magnetic fields. The total instantaneous energy density ($u$) of an electromagnetic wave at any point in space is the sum of the energy densities of the electric and magnetic fields at that point:
$ u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0} $
For a plane electromagnetic wave in vacuum, the magnitudes of the electric and magnetic fields are related by $E = cB$, where $c = 1/\sqrt{\mu_0 \epsilon_0}$. This means $c^2 = 1/(\mu_0 \epsilon_0)$.
Substitute $B = E/c$ into the expression for $u_B$:
$ u_B = \frac{(E/c)^2}{2\mu_0} = \frac{E^2}{2\mu_0 c^2} $
Substitute $c^2 = 1/(\mu_0 \epsilon_0)$ or $\mu_0 c^2 = 1/\epsilon_0$:
$ u_B = \frac{E^2}{2\mu_0 (1/(\mu_0 \epsilon_0))} = \frac{E^2}{2/\epsilon_0} = \frac{1}{2} \epsilon_0 E^2 $
Thus, in an electromagnetic wave in vacuum, the energy density of the magnetic field is equal to the energy density of the electric field at every instant and at every point in space.
$ u_B = u_E = \frac{1}{2} \epsilon_0 E^2 $
The total instantaneous energy density is then:
$ u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \epsilon_0 E^2 = \epsilon_0 E^2 $
We can also express this in terms of $B$: since $E=cB$, $E^2 = c^2 B^2 = (1/(\mu_0\epsilon_0)) B^2$. So $\epsilon_0 E^2 = \epsilon_0 \frac{B^2}{\mu_0 \epsilon_0} = \frac{B^2}{\mu_0}$. This doesn't match $u = B^2/\mu_0$. Let's recheck the relation $u_B = u_E$.
$u_B = \frac{B^2}{2\mu_0}$. Using $B=E/c$, $u_B = \frac{(E/c)^2}{2\mu_0} = \frac{E^2}{2\mu_0 c^2}$. Using $c^2 = 1/(\mu_0 \epsilon_0)$: $u_B = \frac{E^2}{2\mu_0 (1/(\mu_0 \epsilon_0))} = \frac{E^2 \mu_0 \epsilon_0}{2\mu_0} = \frac{1}{2} \epsilon_0 E^2$. This is correct.
So $u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \epsilon_0 E^2 = \epsilon_0 E^2$.
Also $u = u_E + u_B = \frac{B^2}{2\mu_0} + \frac{B^2}{2\mu_0} = \frac{B^2}{\mu_0}$.
So, the total instantaneous energy density is $u = \epsilon_0 E^2 = B^2/\mu_0$. Wait, this doesn't look right. The initial formulas for $u_E$ and $u_B$ are correct. Their sum should be correct. $\epsilon_0 E^2 = \epsilon_0 (cB)^2 = \epsilon_0 c^2 B^2 = \epsilon_0 \frac{1}{\mu_0 \epsilon_0} B^2 = \frac{B^2}{\mu_0}$. Ah, yes, $\epsilon_0 E^2 = B^2/\mu_0$. So the total energy density can be written in terms of E alone or B alone.
$ u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0} = \frac{1}{2} \epsilon_0 E^2 + \frac{\epsilon_0 E^2}{2} = \epsilon_0 E^2 $ (This seems right)
$ u = u_E + u_B = \frac{B^2}{2\mu_0} + \frac{B^2}{2\mu_0} = \frac{B^2}{\mu_0}$ (This also seems right)
Let's recheck the $u_B = \frac{1}{2}\epsilon_0 E^2$ derivation. $u_B = \frac{B^2}{2\mu_0}$. Using $B=E/c$: $u_B = \frac{(E/c)^2}{2\mu_0} = \frac{E^2}{2\mu_0 c^2}$. Using $c^2 = 1/(\mu_0 \epsilon_0)$, so $\mu_0 c^2 = 1/\epsilon_0$: $u_B = \frac{E^2}{2(1/\epsilon_0)} = \frac{1}{2} \epsilon_0 E^2$. This is correct.
So, instantaneous energy density $u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \epsilon_0 E^2 = \epsilon_0 E^2$. Also $u = u_E + u_B = \frac{B^2}{2\mu_0} + \frac{B^2}{2\mu_0} = \frac{B^2}{\mu_0}$. There must be a factor of 2 difference.
Ah, $u = u_E + u_B = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0}$. Using $B=E/c$ and $c=1/\sqrt{\mu_0\epsilon_0}$: $u = \frac{1}{2} \epsilon_0 E^2 + \frac{(E/c)^2}{2\mu_0} = \frac{1}{2} \epsilon_0 E^2 + \frac{E^2}{2\mu_0 c^2} = \frac{1}{2} \epsilon_0 E^2 + \frac{E^2}{2\mu_0 (1/\mu_0\epsilon_0)} = \frac{1}{2} \epsilon_0 E^2 + \frac{E^2 \mu_0 \epsilon_0}{2\mu_0} = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \epsilon_0 E^2 = \epsilon_0 E^2$. This confirms $u=\epsilon_0 E^2$.
Now using $E=cB$ and $c=1/\sqrt{\mu_0\epsilon_0}$: $u = \frac{1}{2} \epsilon_0 (cB)^2 + \frac{B^2}{2\mu_0} = \frac{1}{2} \epsilon_0 c^2 B^2 + \frac{B^2}{2\mu_0} = \frac{1}{2} \epsilon_0 \left(\frac{1}{\mu_0 \epsilon_0}\right) B^2 + \frac{B^2}{2\mu_0} = \frac{B^2}{2\mu_0} + \frac{B^2}{2\mu_0} = \frac{B^2}{\mu_0}$.
Okay, $u = \epsilon_0 E^2$ and $u = B^2/\mu_0$ are BOTH correct ways to write the total instantaneous energy density, because $\epsilon_0 E^2 = B^2/\mu_0$ due to the relation $E=cB$ and $c=1/\sqrt{\mu_0\epsilon_0}$.
Average Energy Density
Since the electric and magnetic fields in an electromagnetic wave vary sinusoidally, $E = E_0 \sin(kx - \omega t)$ and $B = B_0 \sin(kx - \omega t)$, the energy densities also vary with time and position.
$ u_E = \frac{1}{2} \epsilon_0 E_0^2 \sin^2(kx - \omega t) $
$ u_B = \frac{B_0^2}{2\mu_0} \sin^2(kx - \omega t) $
The average value of $\sin^2(kx - \omega t)$ over a cycle of time or space is $1/2$.
The average energy density is:
$ \langle u \rangle = \langle u_E \rangle + \langle u_B \rangle = \frac{1}{2} \epsilon_0 \langle E^2 \rangle + \frac{\langle B^2 \rangle}{2\mu_0} $
$ \langle E^2 \rangle = \langle E_0^2 \sin^2(kx - \omega t) \rangle = E_0^2 \langle \sin^2(kx - \omega t) \rangle = \frac{1}{2} E_0^2 $
$ \langle B^2 \rangle = \langle B_0^2 \sin^2(kx - \omega t) \rangle = B_0^2 \langle \sin^2(kx - \omega t) \rangle = \frac{1}{2} B_0^2 $
$ \langle u_E \rangle = \frac{1}{2} \epsilon_0 \left(\frac{1}{2} E_0^2\right) = \frac{1}{4} \epsilon_0 E_0^2 $
$ \langle u_B \rangle = \frac{(1/2) B_0^2}{2\mu_0} = \frac{B_0^2}{4\mu_0} $
Since $\frac{1}{2}\epsilon_0 E_0^2 = \frac{B_0^2}{2\mu_0}$ (from $E_0=cB_0$), we have $\langle u_E \rangle = \langle u_B \rangle$.
The total average energy density is:
$ \langle u \rangle = \langle u_E \rangle + \langle u_B \rangle = \frac{1}{4} \epsilon_0 E_0^2 + \frac{1}{4} \epsilon_0 E_0^2 = \frac{1}{2} \epsilon_0 E_0^2 $
Also, $ \langle u \rangle = \langle u_E \rangle + \langle u_B \rangle = \frac{B_0^2}{4\mu_0} + \frac{B_0^2}{4\mu_0} = \frac{B_0^2}{2\mu_0} $.
So, the average energy density is $\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2 = \frac{B_0^2}{2\mu_0}$. This is also equal to $\frac{1}{2} \epsilon_0 E_{rms}^2 + \frac{B_{rms}^2}{2\mu_0}$, where $E_{rms} = E_0/\sqrt{2}$ and $B_{rms} = B_0/\sqrt{2}$.
Energy Flow and Intensity
Electromagnetic waves carry energy as they propagate. The rate of energy flow per unit area perpendicular to the direction of propagation is called the intensity ($I$) or irradiance of the wave.
Consider a volume of space traversed by the wave. If the wave travels at speed $c$, in a time $dt$, the wave covers a distance $dx = c \, dt$. The energy contained in a volume $dV = A \, dx = A c \, dt$ will pass through the area $A$ in time $dt$.
The energy in this volume is $dU = u \, dV = u A c \, dt$, where $u$ is the instantaneous energy density.
The rate of energy flow through area $A$ is $dP = dU/dt = uAc$.
The intensity $I$ is the power per unit area:
$ I = \frac{dP}{A} = \frac{uAc}{A} = uc $
Using the average energy density $\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2$, the average intensity is:
$ I_{avg} = \langle u \rangle c = \left(\frac{1}{2} \epsilon_0 E_0^2\right) c = \frac{1}{2} \epsilon_0 c E_0^2 $
Using $E_0 = cB_0$ and $c=1/\sqrt{\mu_0\epsilon_0}$:
$ I_{avg} = \frac{1}{2} \epsilon_0 \left(\frac{1}{\sqrt{\mu_0\epsilon_0}}\right) E_0^2 = \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} E_0^2 $
Also, $ I_{avg} = \langle u \rangle c = \left(\frac{B_0^2}{2\mu_0}\right) c = \frac{c B_0^2}{2\mu_0} $.
Using $E_0 = cB_0$, $B_0 = E_0/c$. $ I_{avg} = \frac{c (E_0/c)^2}{2\mu_0} = \frac{c E_0^2}{2\mu_0 c^2} = \frac{E_0^2}{2\mu_0 c} $. Using $c=1/\sqrt{\mu_0\epsilon_0}$: $I_{avg} = \frac{E_0^2}{2\mu_0 (1/\sqrt{\mu_0\epsilon_0})} = \frac{E_0^2 \sqrt{\mu_0\epsilon_0}}{2\mu_0} = \frac{E_0^2 \sqrt{\epsilon_0}}{2\sqrt{\mu_0}}$. Hmm, should be $\sqrt{\epsilon_0/\mu_0}$.
Let's restart the average intensity expressions using $E_{rms}$ and $B_{rms}$. $\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2 = \epsilon_0 E_{rms}^2$. $\langle u \rangle = \frac{B_0^2}{2\mu_0} = \frac{B_{rms}^2}{\mu_0}$.
$ I_{avg} = \langle u \rangle c = \epsilon_0 E_{rms}^2 c $
$ I_{avg} = \langle u \rangle c = \frac{B_{rms}^2}{\mu_0} c $
Using $E_{rms} = cB_{rms}$:
$ I_{avg} = E_{rms} B_{rms} \frac{c}{c} = E_{rms} B_{rms} $ (This is wrong, should be $E_{rms} B_{rms} c$)
Let's use $E_0=cB_0$. $I_{avg} = \frac{V_0 I_0}{2} \cos\phi$. Wait, this was for AC circuits. For EM waves, there's no component like R, L, C in vacuum. The energy flow is related to the fields directly.
$ I_{avg} = \langle u \rangle c $. Using $\langle u \rangle = \frac{1}{2}\epsilon_0 E_0^2$: $I_{avg} = \frac{1}{2}\epsilon_0 E_0^2 c$. This is correct. Using $\langle u \rangle = \frac{B_0^2}{2\mu_0}$: $I_{avg} = \frac{B_0^2 c}{2\mu_0}$. This is correct. Using $E_0=cB_0$: $I_{avg} = \frac{E_0 (E_0/c) c}{2\mu_0} = \frac{E_0^2}{2\mu_0}$. No, this is wrong.
Let's retry $I_{avg}$ in terms of $E_0$ and $B_0$: $I_{avg} = \frac{V_0 I_0}{2}$ for a resistive circuit. This is not for EM waves in vacuum.
The power per unit area is $S = uc$. Average power per unit area $I_{avg} = \langle u \rangle c$. $\langle u \rangle = \frac{1}{2}\epsilon_0 E_{rms}^2 + \frac{B_{rms}^2}{2\mu_0}$. $E_{rms} = c B_{rms}$. So $\frac{1}{2}\epsilon_0 E_{rms}^2 = \frac{1}{2}\epsilon_0 (cB_{rms})^2 = \frac{1}{2}\epsilon_0 c^2 B_{rms}^2 = \frac{1}{2}\epsilon_0 \frac{1}{\mu_0\epsilon_0} B_{rms}^2 = \frac{B_{rms}^2}{2\mu_0}$.
$\langle u \rangle = \frac{1}{2}\epsilon_0 E_{rms}^2 + \frac{1}{2}\epsilon_0 E_{rms}^2 = \epsilon_0 E_{rms}^2$. $\langle u \rangle = \frac{B_{rms}^2}{2\mu_0} + \frac{B_{rms}^2}{2\mu_0} = \frac{B_{rms}^2}{\mu_0}$.
$I_{avg} = \langle u \rangle c = \epsilon_0 E_{rms}^2 c$. Using $E_{rms} = c B_{rms}$: $I_{avg} = \epsilon_0 (cB_{rms}) E_{rms} = \epsilon_0 c E_{rms} B_{rms}$. Using $B_{rms} = E_{rms}/c$: $I_{avg} = \epsilon_0 E_{rms}^2 c$. Using $E_{rms} = c B_{rms}$: $I_{avg} = \epsilon_0 (cB_{rms})^2 c = \epsilon_0 c^3 B_{rms}^2$. This seems off.
Let's use $I_{avg} = E_{rms} H_{rms} \cos\phi$ where $H_{rms} = B_{rms}/\mu_0$. For EM waves in vacuum, $E$ and $B$ are in phase, related by $E=cB$. $H=B/\mu_0 = E/(c\mu_0)$. $I_{avg} = E_{rms} H_{rms} = E_{rms} (B_{rms}/\mu_0)$. Using $B_{rms} = E_{rms}/c$. $I_{avg} = E_{rms} \frac{E_{rms}/c}{\mu_0} = \frac{E_{rms}^2}{\mu_0 c}$. Using $c=1/\sqrt{\mu_0\epsilon_0}$: $I_{avg} = \frac{E_{rms}^2}{\mu_0 (1/\sqrt{\mu_0\epsilon_0})} = \frac{E_{rms}^2 \sqrt{\mu_0\epsilon_0}}{\mu_0} = E_{rms}^2 \sqrt{\frac{\epsilon_0}{\mu_0}}$. This is correct.
Using $E_{rms} = c B_{rms}$: $I_{avg} = \frac{(cB_{rms})^2}{\mu_0 c} = \frac{c^2 B_{rms}^2}{\mu_0 c} = \frac{c B_{rms}^2}{\mu_0}$. This is also correct.
Using $E_{rms} = c B_{rms}$: $I_{avg} = E_{rms} B_{rms} c$. No, $I_{avg} = E_{rms} B_{rms}$ is not the formula. $I_{avg} = E_{rms} H_{rms} = E_{rms} (B_{rms}/\mu_0)$. This is correct.
Let's summarize the average intensity:
$ I_{avg} = \langle u \rangle c = \frac{1}{2} \epsilon_0 E_0^2 c = \epsilon_0 E_{rms}^2 c $
$ I_{avg} = \frac{B_0^2 c}{2\mu_0} = \frac{B_{rms}^2 c}{\mu_0} $
$ I_{avg} = \frac{E_0 B_0}{2\mu_0} $ (since $c = E_0/B_0$)
$ I_{avg} = \frac{E_{rms} B_{rms}}{\mu_0} $ (since $c = E_{rms}/B_{rms}$)
These formulas give the average intensity of the electromagnetic wave in vacuum.
Example 1. A monochromatic plane electromagnetic wave has a peak electric field amplitude of $100 \, V/m$. Calculate (a) the peak magnetic field amplitude, (b) the average energy density, and (c) the average intensity of the wave in vacuum. ($\mu_0 = 4\pi \times 10^{-7} \, T \cdot m/A$, $c = 3 \times 10^8 \, m/s$, $\epsilon_0 = 8.854 \times 10^{-12} \, C^2/(N \cdot m^2)$).
Answer:
Given:
Peak electric field amplitude, $E_0 = 100 \, V/m$
Speed of light in vacuum, $c = 3 \times 10^8 \, m/s$
Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \, T \cdot m/A$
Permittivity of free space, $\epsilon_0 = 8.854 \times 10^{-12} \, C^2/(N \cdot m^2)$
(a) The peak magnetic field amplitude ($B_0$) is related to the peak electric field amplitude by $E_0 = cB_0$.
$ B_0 = \frac{E_0}{c} = \frac{100 \, V/m}{3 \times 10^8 \, m/s} $
$ B_0 = \frac{1}{3} \times 10^{-6} \, T \approx 0.333 \times 10^{-6} \, T = 3.33 \times 10^{-7} \, T $
The peak magnetic field amplitude is approximately $3.33 \times 10^{-7} \, T$.
(b) The average energy density $\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2$.
$ \langle u \rangle = \frac{1}{2} (8.854 \times 10^{-12} \, C^2/(N \cdot m^2)) (100 \, V/m)^2 $
$ \langle u \rangle = \frac{1}{2} \times 8.854 \times 10^{-12} \times 10000 \, J/m^3 $ (Unit check: $C^2/N \cdot m^2 \cdot V^2/m^2 = C^2 (J/C)^2 / (N m^4) = C^2 J^2 / (C^2 N m^4) = J^2 / (J/m \cdot m^4) = J^2 / (J m^3) = J/m^3$)
$ \langle u \rangle = 4.427 \times 10^{-12} \times 10^4 \, J/m^3 = 4.427 \times 10^{-8} \, J/m^3 $
The average energy density is $4.427 \times 10^{-8} \, J/m^3$.
(c) The average intensity $I_{avg} = \langle u \rangle c$.
$ I_{avg} = (4.427 \times 10^{-8} \, J/m^3) \times (3 \times 10^8 \, m/s) $
$ I_{avg} = (4.427 \times 3) \times 10^{0} \, W/m^2 $ (Unit check: $J/m^3 \cdot m/s = J/(m^2 s) = W/m^2$)
$ I_{avg} = 13.281 \, W/m^2 $
The average intensity of the wave is 13.281 Watts per square meter.